If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10t^2+17t-20=0
a = 10; b = 17; c = -20;
Δ = b2-4ac
Δ = 172-4·10·(-20)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-33}{2*10}=\frac{-50}{20} =-2+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+33}{2*10}=\frac{16}{20} =4/5 $
| 15x-8=14x=13 | | 3(-4-10/2)=a | | 3x+24=6×+39 | | x=-120+4x | | 2/3(5n-4)=12 | | 2x-4/3=11 | | 13p+3p+3p–10p=18 | | 1.5x+x=100000 | | 2n-5-n=5 | | 2x=30+6x-74 | | 5(z-4)=7(2z+1) | | 12k-12=8 | | 4h+1=9 | | 4x-2(x-5)=-3+5x-8 | | 5(3x-4)=5(5x-1) | | 4y-10=35 | | 8c+6=2c+7 | | -2(x+1)=5-3x | | 9=1~2(-2+5n) | | 1.25x+39.99=1.75x+25.99 | | 70-5x=80-9x | | 45+135+3x+45+x+135=720 | | x²+x+1=0 | | 6+5x/3=10 | | 5/3+2/3x=35/15+6/5x-2/3x | | -2x-7=x-27 | | (10)(0.034)=(x)(100) | | (7+4x)=(2-5x) | | .04x^2+1.2x-200=0 | | -1=b-3 | | 2(1-x)+5=3(2x-11 | | 4x^2-7x+34=0 |